Solution:
\(3y^2-5y+2=0\)
[make the coeffient of \(y^2\) 1 by dividing through by 3]
\(\frac{3y^2}{3}-\frac{5y}{3}+\frac{2}{3}=\frac{0}{3}\)
\(\Rightarrow y^2-\frac{5y}{3}+\frac{2}{3}=0\)
\(\Rightarrow y^2-\frac{5y}{3}=-\frac{2}{3}\)
Now we find \(\frac{1}{2} \text{of } -\frac{5}{3}\) and square it.
i.e \(\frac{1}{2}(-\frac{5}{3})=(-\frac{5}{6})^2\)
add \((-\frac{5}{6})^2 \text{ to} -\frac{5}{3}y \text{ and} -\frac{2}{3}.\)
\(\Rightarrow y^2-\frac{5}{3}y+(-\frac{5}{6})^2=-\frac{2}{3}+(-\frac{5}{6})^2\)
\(\Rightarrow (y-\frac{5}{6})^2=-\frac{2}{3}+\frac{25}{36}\)
\(\Rightarrow (y-\frac{5}{6})^2=\frac{1}{36}\)
Finding square root of both sides
\(\Rightarrow \sqrt{(y-\frac{5}{6})^2}=\sqrt{\frac{1}{36}}\)
\(\Rightarrow y-\frac{5}{6}=\pm\frac{1}{6}\)
\(\Rightarrow y=\pm\frac{1}{6}+\frac{5}{6}\)
Either \(y=\frac{1}{6}+\frac{5}{6}\) or \(y=-\frac{1}{6}+\frac{5}{6}\)
For \( y=\frac{1}{6}+\frac{5}{6}\)
\(y=1\)
And for \(y=-\frac{1}{6}+\frac{5}{6}\)
\(y=-\frac{4}{6}=\frac{2}{3}=0.67\) to two decimal places
Hence \(y=1.00 \text{ and } 0.67\) to two decimal places.
By: Abdul Karim